
INFORMATION DISTRIBUTION ASPECTS OF

DESIGN METITODOLOGY

by

D. L. Parnas

Cornputer Sclence DeParfment

Carneg ie -1"1e I lon Univers ltY

Pit tsburgh, PennsYlvania

February, 1 971

This work vras supporEed by the Advanced Research Projects Agency

of rhe Off ice of- the Secretary of Defense (F44610-70-C-0107) and

is monitored by the Air Force of f ice of scient i f ic Research.

Thls docrruent has been approved for publ ic release and sale; iEs

disrr ibut ion is unl imited.

11

ACKNOIdI,EDGEMENT

I am grateful to A. Pert is, H. Wact lar , and G. Bel l for their

suggest ions af ter an ear ly reading of th ls paper. I .am deeply grateful

to NV Phi l tps-Electrologica, Apeldoorn, the Nether lands, for having pro-

vided me wlth the opportuni ty to sLudy the problems of systems develop-

ment in pract ice and by means of a dlrect invol-vement rather than a

remote study. Al though the problems di .scussed in th ls paper are apparent ly

shared by everyone in the lndustry, the steps taken at Phi l ips to improve

the si tuat lon have provided me with valuable lnsight. Thanks are due to

count less personnel , both at Phi l ips and at severaL other inst i tut ions,

who have been pat ient dur ing my probing.

t11

IN}-OR].JATION DISTRIBUTION ASPXCTS OF DESIGN ME1UODOLOGY

D. L. Parnas
Department of Compuler Science

Qarnegie - l ' l .eI Ion Univcrsi ty
Pictsburgh, Pennsylvania

ABSTRACT

The role of documentat ion in the design and implernentaEion of complex

systems is explored, resul t ing in suggesLions in sharp contrast wi th cur-

rent pract ice. The concept of syst .em sCructure is studied by examining

the nreaning of the phrase I 'connect ions betr ' reen modulest ' . I t is shown that

several system desi .gn goals (each suggesEing a parLial t ime order ing of

Ehe decis ions) may be inconsistent. Some propert ies of programmers are

discussed. System documenEat ion, whlch makes a1I inforrnat ion accessible

to anyone working on the project , is d iscussed. The thesis that st tch

infonrrat ion rrbroadcast ingrt 1s harrnful , thaE i t is helpful . i f most system

inforrnat ion is hidden from most programmers, J.s supported by use of the

above ment ioned consideraEions as wel l as by examples" An lnformaEion

hiding technique of documencar. ion is exhibi ted in the appendix"

IFIP CLASSIFICATION: 3

L.angu._a.g€ of 0ra1 P_!esen!3!ioq: English

Staternent of- Or_igir la l i . ty : In Ehe opinion of che author the paper cont.ains

a number of conclusions r ' rh ich have not been discussed or publ ished else-

where. No paper s imi lar in scope to th is paper is being presented for:

oubl ica Lion elsewhere.

INFOIN1ATION DISTRIBUTION ASPECTS OF DESIGN METHODOLOGY

D. L. Parnas
DeparLment of Conputer Sclence

Carnegie-I le l lon Universi tY
Pit . tsburgh, PennsYlvania

INTRODUCTION

Papers on design methodology assume (I) thaE the methods used in

system design af fect strongly the qual i ty of the f inal product; and (2)

by select ing an appropr iate methodology \^7e can avoid many of the problems

previously encountered in construcEing l -arge systerns.

Under the heading t 'Design Methodol .ogy" a number of separate topics

can be dist inguished:

l . The order in rqhich design decis ions are made 1I ,2, 3, 6]

2. The character ist ics of the f inal product (e.g. , what con-

st l - tutes "good structure" for a syscem) 14, 5, 6! 7]

3. l " lerhods of detect ing errors in design decis ions short ly

af ter they are made lL, 2, 3, 5, 8, 9]

4. Speci f icat ion techniques [12' f3]

5. Tools for system designers l l ' 2, 3 ' 10, 11]

This paper emphasizes another topic named " informat ion distr ibur ionl '

Design and development are a ser ies of decis ions. Each decis ion resul ts

in informat. ion about the system which can be used in making later decis ions.

I^ le want eventual ly to di-scuss the dist . r ibut ion of Ehat informat ion among

those rvorking on the sysEenr and to deal wi th i ts organizat ion in documenta-

t ion. To prepare for th is discussion we deal f i rst rv i th (1) the concept

of system sfructure, (2) constraints on the order of decis ions, and (3) some

observed charac Eer ist ics of good prograrrmcrs.

-2-

STRUCTURE DEFINED

The word ' rst , ruct .urerr is used to refer to a part . ia l descr ipcion of

a sysEem. A strucEure descr ipEion shorvs Ehe system div ided into a set

of modules, g ives some character isEics of each module, and speci f ies

some connect ions between the modules" Any given syst .em admiEs many such

descr ipt ions. Since structure descr ipt ions are not unique, our usage of

r lnodulertdoes noE. al l "ow a precise def in i t ion paral- le l to that of ' rsub-

roucinett in sof tware or t 'cardt t in hardware. The def in i t ions of chose

words del ineaEe a c lass of objects, but noc the def in i .Eion of I 'modulef '

Nevertheless, I tmodulei l is useful in the same mal lner that . ' tuni t i l is in

rn i l i tary or economic discussions. We shal l - cont inue to use trmoduler0

wiEhout a precise def in lc ion. I t refers Eo port ions of a system indicated

in a descr ipt ion of that sysEem. I ts precise def in i t r ion is noE. only

system dependent buE also dependent upon the part icular descr ipt ion under

discussion.

Ihe term rrconnect ionrr is usual ly accepted more readi ly" Many assume

that the t rconnect ionsrr are conErol t rans f er poinEs, p:a.ssed parameters,

and shared data for sof t rqare, wires or other physical ,connecEions for hard-

i {are. Such a def in i t ion of "connect ionrt is a highly dangerous oversimpl i f i -

connec t i onscat ion which resulLs in misleadino

becween modules are thg lssuntpl- ions

descr ipt ions " The

modules rrnake abouE eact l

s t ruc Eure

which the

ot leq. In most syst .ems vre f ind that these connect ions are much more ex-

tensive than the cal l ing seqLlences and control b lock f 'orntaEs usual ly shown

in sysEenr strucEure descr ipt ions.

-3-

Ttre meaning of the above remark can be exhibi ted by consider ing two

si tuat ions in which the structure of a syst .em is terr ib ly i rnportant:

(1) malcing of changes in a system, and (2) proving system correctness,

(I feel no need to argue the necessi ty of proving prograrns correcc, or

to support . Ehe necessicy of making changes. I wish t ,o use those hypo-

thet ical s i tuaEions to exhibi t the meaning of r rconnect iorurt)

CorrecEness proofs can become so conplex that their own correctness

ls in quest ion [e.g. , 14, 15]. We would l ike to s l rnpl i fy che proofs by

using the st , ructure of the program, proving the correct ,ness of each

module separately. For each nodule we wj. lL have a set of hypotheses to

Prove and a descr ipt i .on of the module. In our hypotheses we can dist ingulsh

the things I^/e expect a nlodule Lo accompl ish f rom the things which we assume

other modules wi l l guarantee. Those statements are the connect ions between

the nodule being examined and the rest of the system. The proof process

w111 be faci t iLated only i f the amount of informat ion in the hypotheses

is s igni f lcant ly less than the amount of informaEion in the fu l l descr ip-

t ion of the connecEed modules. In the extreme case, where one moduleos

correctness is predicated upon rhe complete descr ipt ion of another module,

the proof of the f i rst module 's correccness wi l l be as complex as i f the

two were considered a s ingle module.

l , Ie now consider making a change in che completed system" We ask,

"WhaE changes can be made to one module wi thout involv ing change to other

modules?rr l le nray make only those changes which do noL violate the assump-

t ions made by other modules about the module being changed" In other

words, a s ingle module may be changed only as l -ong as thettconnect ionset

-4-

6t i1 l I ' f lLr , l {ere, too, vre have a strong argui0ent for making the connec-

Eions contain as l i tc1e informat ion as poss: ' -b1e.

FACTORS IN}'LUENCING TLIE ORDER OF DNCISION I'IAI(ING

progress in a design is marked by decis ions which el iminate sclnte

posslbi l i t ies for system srructure. The fact that those possibi l i t ies

have been el imlnated can be part . of the rat ionale for subsequent decis ions-

I f the inforrnat ion is used, the order of decis ion makfr-ng (in t ime) af f ecEs

the structure of fhe resulLing product. Exanlples of interest can be found

ln [4] . We can ident i fy three considerat ions, each suggesEing a part ia l

order ing on the decis ions.

1. Obtaining tgoodr external charact .er ist ics.

AlL systems have characLer ist ics which are not ptr .easing to the users.

Usual ly they were noE determined by expl ic i t del iberat ions; they were the

unnot iced impl icat ions of decj .s ions about other aspecEs of system structure'

To conslstent ly avoid such errors we can make the decis ions abouL external

character ist ics. f i rst . We use the resul t ing informat ion to make the later

decis ions. The internal decis ions rvould be ei ther de,nived from or checked

against the compJ.ete speci f icat ions of the external f ,acLors. This is the

basis of the | t top downl or r touLside int ' approach discu-rssed in 11, 2, 3, 41.

Z. Reduci .ng the t j .me interval betrveen in i t iat ion and complet ion of the project .

Compet i t ive pressures rnay recluire the use of large groups to produce

a system in a sharply l inr i ted per i .od of t ime. Addi t ional men speed up a

project s igni f icant ly only af ter the project has been div ided into sub-

projects in sr-rch a way Ehai separate groups can work r ' r i th l i t t l .e interact ion

-5-

(1.e. , spending signi f icant ly less t ime in inter-group decis ions than

ln ingra-group decis ions). This consideraEion af fects the order of

decis ions in that i t encourages very ear ly spl i t t ing of the system into

modules rvhich are Ehen designed completely independent ly. The deslre to

make Ehe spl i t ear ly and "get on with i t t t encourages a spl i t t ing along

fami l iar l ines and in agreement \ t i th exist ing persounel c lassi f icat ions.

Time pressures encourage groups to rnake the spl ic before the externals

are def ined. Consequent ly we f ind some adverse ef fect on the useabi l i ty

of the product, . Haste also makes poor inEernal structure more l ikely"

3. Obtaining an easi ly changed system.

Systems are changed af ter consEruct ion ei ther because their or ig inal

characEerisEics proved insuff ic ient or because another appl icaEion \^/as

found. We have already noted chat the di f f icul t ies in changing systerns

are related to the assumptions ruhich each of the modules makes about iEs

environment. Since each decis ion is usual ly made on the asstrmpt ion that

the previous decis ions wi l l hold, the most di f f icul t decis ions to change

are usual ly the ear l" iest . The lasr piece of code inserted may be changed

easi ly, but a piece of code inserLed several rnonths ear l ier may have

I 'v/ormed" i tsel f into the program and become di f f icul t to exEract. These

considerat ions suggest that the ear ly decis ions should be those which are

the least l ikely to changei i .e. , those based on t 'unj .versal t ' t ruths or

reasoning r , rh ich takes into account 1i t t le about a part icular environnent.

The remaining facts must be used eventual ly, but the possibi l i ty of change

suggesLs using the mosE generai informat ion f i rst .

-6-

Since such external characEerist ics as job control language and f i le

comnrands are very f requent ly changed, Ehe "outside- in" approach may make

the systern harder Eo change. l 'ur ther, those decis ions which should be

made ear ly on this basis are not usual ly those which a1low the project

to be quickly subdiv ided into independenL assigrmrents. As a rule, decis ions

which do not use al l the avai lable informat ion abouL a syscem (i .e. , the

general decis ions) take more t ime.

In sunmary, each of the Ehree considerat ions suggest.s a part ia l

order ing of the decis ions. Those order ings are usual ly inconsistent in

that i t wi l l be impossible to sat isfy them simultaneously.

DOCTJMENTATION SYSTFIS

For any complex sysLem there musl be documentat ion about fhe systern

for use by the hurnan beings who must, cornplete i t . Progranis and wir ing

diagrams do completely def ine Ehe algor i thnr which they wt l l
"*u",rai ,

but

th ls forrn of documentat ion is not usual ly appropr iate for people. Conse-

quenEly there are always papers which at tempt to answer the quesEions rnost

l ikely Eo be asked. There is usual ly no atcempt to make the documentaEion

complete (i .e. , equl-valent to the code) for sof tware, thus cerEain quest ions

must be ansrvered bv reference to the code.

When a sysEem is strongly connecEed, th is documentat ion musL be read

by persoirs not c losely involved rv ieh the module being documented. Because

each r .+orking grorrp develops a unique module organizat i .on and a corresponding

seq of conceptg ggd- !SlmF-, the documents which they wr i te are di f f icul-c for

ouLsiders to read.

-7-

The nat-ural respon.se is to require al l documentat ion to be wriEten

with a standard organizat ion and vocabulary [16] . A standard is made

company-wide eo al1ow anyone in the organizaLion Eo f ind some piece of

lnformat ion wiEhout rreeding to learn Ehe concepEs and vocabulary pecul iar

to one systenr or module.

Such approaches raise several quest ions:

1. Is i t real ly desirable Eo have al l informacion equal ly

accessible to al l in the company (or project)?

2, Whac is the ef fect of documencat ion standards on the

resul t ing sys tem?

3. I , lhat is the resulE of a non-standard syste$ being descr ibed

using a standard document organizat lon?

Documentat ion standards tencl to force system structure into a standard

rno1d. A standard for document organizat ion and vocabt l lary makes some

assumptions about the structure of the system to be descr ibed. I f those

assumptions are v io latecl , the documenE organizat ion f i ts poor ly and the

vocabulary musE be stretched or mlsused. Consider the fo l lotr ing example.

In most operaLing syslems there exists a module which handles al l job

control seaternents f rom Ehe t ime they are re.ad iu unt i l the job is completed.

As a resul t , most documentat ion sysEems can inslst that there be a sect ion

descr ib ing such a module. Norv consider an organizat ion such as bhat, of

the T. t t .E. sysCem in which there is no such nrodule because mosf of the

processing is handled in modules which are also used for other purPoses.

I f we adhere to the docunenLat ion standard r . re wi l l dupl icate informat ion

and descr ibe one module in the documentat ion of another.

-8-

I f there are to be standard documentat lon organi .zat ions, they must

be designed to nake the nr in imum number of assumptlons abouE the sysLern

being doctrmenLed. I f so, they wi l l be of l i Lt le help in malcing the

document readable to people who do not understand Ehe structure of the

sy s fenl .

ON SOYE PROPERTIES OI' GOOD PROGP"AI,D{ERS

The fol lorv ing observaEion is essent ia l to Ehe remainder of th is

PaPer:

t'A_ggo4_pggg.ranmer makes use_of. rlle u5e!-l3_:nfprrn+".tj-ol_g_fy-g!_h-imltr

The good prograrnmer wi l l t ry to use his machine rvel l . He is actual ly

progranrning for a rrv i rLual machinei l def ined by the hardrsare and his knowledge

of the other sof t rvare on the machi-ne. His t ra in ins and his nat.ure lead

hirn to rnake ful I use of that extended machine.

Sometimes the uses are obvious. The programner rnakes use of a sub-

rout ine f rom sonre other module, or a table of constanEs already present

for some other piece of code. Somet. imes these uses are so marginal as to

be l -aughable, e.B. t the use of a 3- inslruct ion subrout i .ne or the borrorving

of a s ingle constant. In Ehe terms of our previous discussions, such ex-

treme cases increase the connecEivi ty of the sEructure r , r i thout. appreciably

improving i ts performance.

Sometirnes the uses are lcss obv j .or . rs. For exarnple, a programmer nay

make use of h is knor,r ledee that a l is t is searched in a certain order Eo

el j .minate a check or an extra queue. In the area of appl icacion pr:ogranming

we may f ind a proararnlcr r , rho introduces an erroneous value for I1 knowing

-9-

that because of an error in the s ine rout, ine the erroneous value wi l l

cause his prograJn to converge rnore ra.pidly.

Such uses of informaE.ion have been so cost ly Ehat we observe a strange

react ion. The induslry has started to encourage bad prograrnming. DerogaE.ory

names such as t 'k luclgerr ' r t rhackert 'and I 'b i t twiddlert tare used for the sorL

of fe l lor . r who vrr i tes terr ib ly c lever programs which cause trouble larer on.

They are subt ly but ef fect ively discouraged by being assigned Eo work on

smal l independenE projecEs such as appl icat ion rout ines (the Siber ia of

the sof t r ' rare wor ld) or hardr,rare diagnost ic rout ines (the coal mines) . In

borh s i tuaEions the programrnef has l iut1e opportuni ty to make use of in-

formaLion about other modules.

Those that remain (the non-biE-twiddlers) are usual ly poor progralnners.

Whi le a ferq refrain f rom using inforrnat ion because Ehey know i t wi l l

cause trouble, most refrain because they ere noc clever enough to not ice

thac the informat ion can be used. Such people also miss opportuni t ies

to use facts which should be used. Poor programs resul t" Since even a

poor programner somet imes has arr fLash of br i l l iancett (e.g. , noEicing that

Ewo bytes in a control b lock can be simultaneously set . wi th one insErucEion

because they are adjacent and in the sarne word) we st i l l have no control

of the structure.

We have found that a programmer can disastrously increase the connec-

t iv i ty of the system strucEure by using informat ion he possesses about

other nrodrr les. I , t re wish to have the structure of Ehe system deLermined by

the designe.rs expl ic i t ly before prograimning begins, rather than inadvertent ly

by

bi t

-10

a prograuxlLerts use of lnf ornrat lon. CouscquenLly, we discourage the

twiddlers and pay a pr ice in poor progrannning vr i t l r .o-gt obtaining

complete- ggJrtrol of the stgslug-.

THE USE OI' DESIGNDR CONTROLLED INFORMATION DISTRIBUTIOIJ

We can avoid many of the probletns discussed here by reject lng the

not ion Ehat design inforrnat ion should be accessible Eo everyone" Instead

we should al lorv the designers, those who speci fy rhe structure, Lo

the distr ibut ion of design informat ion as i t ls developed.

must be able Eo control i t by

t ion. We should not expecE a

informicion, raLher he should

use" The decis ion is part of

control

control l ing the distr ibr , r t ion of the informa-

prograrTuner to decide not to use a piece of

not possess informat ion that he should not

the design, not the progranuning.

Our concerns about the inconsistent. decis ion order ings were based

on the assumption that informat ion would be used shorely af ter the cor-

responding decis ion. l 'he restr icEions placed by the t .hree considerat ions

are considerably relaxed i f we have the possibi l iEy of h id ing some decis ions

from each group. For example, we have noted a conf l ic t between Ehe desire

to produce an external speci f icat ion ear ly and the desire to produce a

system for which the external interface is easi ly.661:,ged. l le carr 4void

that conf l ic t by designing the exf ernal int .er face, usi-ng i t as a check

on the remaining work, but h id ing the detai ls that we think l ikely Co

change from those who should not use them"

If we want the structure to be detennined by the designers, they

-11-

Reflect ioLr rv i l l s l low that such a

the designers. \^ t re current ly re)-ease

to do so is considerably easier than

be released and (2) f inding a rvay of

pol icy expecEs a great deal f ront

al l Ehe infonr iacion abouc a modulel

(I) deciding which informaEion should

expressi .ng precisely the inforrnaEi on

needed by other rnodules. Prel i r l inary exper ience has shown thac naking

appropr iace def in i t ions is qui te di f f icul t . Acciuir ing ski l l in naking

those def in ig ions is v i ta l because we wi l l be able bo successful ly btr i ld

systems r , rh i le restr icEing Progranmerst inforrnat. ion only i f rqe learn Co

provide Ehem with precisely the inforrnat ion Ehey need'

EXAI'IPLES

I bel ieve i t worthr,zhi le to give some concrete examples of informat ion

which is now widely disseminated vr i th in a project and should instead be

sharply restr icted.

Control Block Formats

Every system confai l ls smal-1 amounts of informat ion in pre-fornrat led

areas of storage cal led conErol b locks. These are used for passing inforrna-

t ion between modules and are considered to be the interfaces. For th is

reason formats are usual ly speci f ied ear ly in the project and distr ibuted

to al l ryho are vrorking on the project . The forma|s are changed many t imes

dur ing the projecL. Few progranuners on any project need to knot ' r such

formats. They need a means for referr ing to a speci f ic iEern, but not mole.

They need not even knor,r r^rhich infornrat ion is gror-rped into one control b lock"

1.

ta
-) .L-

2. Memory Maps

It is cormnon to begin a descr ipt ion of an operat i -ng sysEem by

(1.) descr ib ing l -he main modules and (2) showing how the core storage is

div idcd among those rraln modules. Soon there is a comir lete map of t t re

menory shorving horv that- resource is al l .ocated. Reasonably sophist icated

des i -gners show the borders of a l located areas as symbol ic . rather bhan ab-

solul-e addresses, but the order of memory assignment is speci f ied. Only

a smal l port ion of th is informat ion der ives f rom hardware decis ions.

There is no legi t i - rnate way to use [he map informaEion. I t v lould be

fr i ,ghEening i f sonleor)e developed code that would noE vror lc i f the map were

ciranged. Such maps are almost invar iably changed because something r , rh ich

vras f ixed becornes .rar iable or v ice versa. The inf orrnat ion is only needed

ab assembLy t i rne. I , le could survive i f i t rvere i ,nput t .o the assembler and

not known by anyone else.

When there is a v i r tual rnenory or other mechanisn for sruapping bui l t

into the systern, the dist inct ion between resident ancl non-resident i terns

should noE be broadcast. I f there are several k inds o, f core storage,

the al l -ocat ion of modules and data among those storage types should not

be'knorun Lo those vrho are rrrr i t ing the modules. I f part ia l preloading of

certain programs is envisagcd, che decis ion as to which modules wi l l be

preloaded should be hidden. Each of these decis ions is rvorthy of at tent ion,

but ferv should lcnot,r the resul t .

3. Cal l ing Sequences

Cal l ing seql lences arc tho secret hobby of every system prograrrLqrer.

We begin Eo lool ' , at nel , / harclware by invent ing a cal1i-ng sequence. Throtrghout

-13-

the design and implernenlat lon, the cal l ing sequence is s impl i f ied, general-

ized, nrade more ef f ic ient , e lc. Each t ime we face a decis ion. Ei ther

modules al l over the systcrN are al tered or the ne\t sequence ls added to

a growing set of cal l ing sequences. In the l .at ter case generat ing a cal l

to a rout ine requires determining which sequence iE uses.

I lost rout ines can be wri t ten, and wri t ten ysl1, wi thout knowledge

of the cal l ing sequence i f the prograruner i -s provided rv i th a prograrrrning

tool which al lorvs hjm to postpone deci-s ions about register al locat ion for

parameters, re l -nrn addresses, and resul ts. Such fearures can be provided

in an assembler r , r i th macro f aci l i t ies.

4. JCL Formats

One character ist ic which should be easy to change is the syntax of

Ehe so cal led Job ConErol Language, Lhe means by wtr ich the user descr ibes

his jobts gross characE,er ist ics to the operat ing syscem. The desi .gn of

a JCL i rnpl ies assumptions about the way that the syst() in wiLl be used which

may later prove Eo be false or too restr ict ive. Ther: ,e exist systems in

which JCL format informat ion has been used so much thi iE reasonable ehanges

are beyond the scope of Ehe usual organizacion. Often changes require

user provis ion of dupl icaEe informaEion and/or the nraintenance of dupl icare

rables. (See, for example, [17] .)

Most of the people wor lc ing on an operat ing system need very l i t t le

knorvledge about the JCL. The only people rvho need to know the format

are those rrho are rvr i t ing Ehe syntax analyzer for the language.

-I4 -

5. Locat ion of t fO Device Addresses

It is r . r idely recognized that device addresses should not be bui l t

lnto code but storecl in tabLes associated with each job. However, i t is

usual that a l -1 prograrrmers are given knolv ledge suff lc ient Lo al low them

to f ind and use the tab1e. For example, many modules wi l l send messages

to a usel aL his te letype. I f . lacer one wishes to lnLersect those messages

and reinEerpret or suppress thern for a special cLass of users, the job is

horrenclous. Most prograrns did not need that informacion. Access to a

module rvhich raould send messages f or them ls suf f ic ient .

6. Character Codes

some hardrvare inforTnal ion should noL be released.. I have seen one

compi ler in rvhich Ehe associat ion made by the hardwarc betvree'n card

characters and integers was so widely used that a second version of the

compi ler (for a nelv machine) contaj .ne.d a module which t ranslated from

the ner.r character code Eo the old one and back again.

Theeff ic iencygaineclbyusingthecharactercodeinformat ion

(e.g. , by using ar i rhmet ic tests to determine i f a gf-wen characEer is

a del- imiter) is of ten not worth the pr ice paid. where i t ls vrorthwhi le,

the knorvledge can be closely restr icted i f the designf- l rs pay at tenr ion

Eo the problem. Certainly the decis ion to use or noE to use the informa-

Eion should nor be lef t up to an indiv ic lual programmer'

-15

CONCI,US ION

The inescapable conclusion is thaE manufacturers rvho wish to produce

software in which the structure is under the control of the designers,

musE develop a documenEat ion syscem rvhich enables deslgner control of

the disEr ibut ion of infonnat ion. Further, they mus'L f ind and/or Erain

designers rqho are able to def ine or speci . fy rnodules in a way which provides

exact ly the informat ion t l iat they want the progranmers Co use. Unt i l we

can completely sraf f a project . wi th men rvho have the intel lectual capaciLy

and training to make that decis ion for themselves, some must make the

decis ion for others. An assembler which al lor , rs the insert ion of sorne

hidden informat ion aE ' rassembly Eimerr wi l l a id in maintaining ef f ic iency,

I consider the internal restr ict ion of inforrnat ion wi th in development

groups to be of far more importance than iLs restr iccion from users or

compet i tors. Muci l of the informat ion in a system document would only harnr

a compet i tor i f he had i t . (He might use i t l)

I t is worth repeat ing that the decis ion about which informat ion to

restr ict is a design decis ion, noE a management one" The management

responsibi l i ty ends with providing the appropr iate infonnat ion distr ibu-

t ion mechanism. The use of that mechanism remains a design funct ion

because i t determines the structure of the product"

-16-

APPINDIX

A I1ODULE DOCUMINTED 0N THE IIASIS 0f "KNEID TO KNOl'lt '

INTRODUCTION

Assume thc sys Eern under cons trucf ion t .o be a t ranslator for str j .ng

manipulat ion algor i thms based upon Markov Algor i thms. Such a package

must contain a represenCat ion of the var iable length str ing knorvn as the

regis!e: which const i tutes Ehe only memory in a hypothet- ical l ' larkov

Algor i thm machine. Assume furEher that the decis ion has been made that

the knor.r ledge of th is representat ion be conf ined to a s ingle module in

spi ;e of the fact that a lmost al l act j .ons done by the system rvi l " l lnvolve

changes in C.[e registcr . The purpose cf th is decis ion is to make the

representat ion easy to change.

The st ,atenrenLs which f o l lorv provide a1l thc docusrentat ion of such a

moclule which should be avai lable Eo i ts users. They a're intended to provide

al1 the informaEion necessary to use the module, i .e. , to marr ipulate the

regi-ster, yet no infonnat ion about the representat ion of the register in

the machine. The mett lod used is to c lef ine f ive procedures, !o speci fy

their in i t ia l values i f they are funcl ions, to speci fy the type of their

parameters vhere they have parameters. Furtherr a scatement is made aS

to the ef fecE of a cal l on t .he procedures on Ehe values of the oLher func-

t ions in the packa.ge. This is done by indicat ing the nerv value of any

changed funcl- ions as a funct ion of their o ld va. lues and the values of

nar^amerers ro the ca11ed procedure. A value before the change is shorvn

enclosecl in s ingle ql lotes (e.g. , ' lengtht) . Values af ter the change are

-L7 -

sho\vn unquoted. The act ions whic l ' r take place in the event of errors

are speci f ied to be procedure cal ls. I t is assumed chat should suct t a

cal l occur, (1) no val t tes rv i l l - have been changed, and (2) upon a return

from the procedure cal led, the at tempt to perforrn the rout ine speci f ied

wi l l be repeated cornpIetelY.

-18*

DEFINITIONS

INTEGER PROCEDURE: LI]NGTII
possible values: an integer 0 < length < 1000

effecL: no ef fect on values of other funct ions

paramefers: none
ini t ia l value: 0

INTEGER PROCEDIIRE: GETCIIA (I)

possible values: an inEeger 0 < GETCHA < 255

paranlet .ers: I must be an integer
ef fect : no changes Eo other funct ions in modules

i f I < 0 V I > LENGTH then a procedure cal l Lo a user vrr i tLen

rout ine RGERR is performed. (program cannot be assembled

without such a rouEine)

in i t ia l value: undef ined

PROCEDUIiL] : INSAFT (I , J)
possible values: none
pararneters: I must be an integer

J must be an integer
ef fec E :

i ! I < 0 v I > 'LEl tGTHr V J < 0 V J > 255 rhen a subrout ine cal l to

a user r ,zr iEten rout i r rc INSAEIT is pcrformed. (rout ine required)

else_ LENGTII - 'LENcTltr -Fl i f LENGTH > 1000 a subrout ine cal l to

user rvr i l ten funct ion LENGER is performed.

GETCI1A(K) =

i fk<r, 'GETCHA(r) '
i f k = I* I , J
i f k > r-Fl , 'GITCHA(K-1) '

PROCEDURII : DELETE (L, J)
possible values: none
parameters: I , J must be infegers
effecL:

i f I < 0 V J < 1 V I1-J > 'L[NGTH' 1- l Lhen a procedure cal l to a

user rvr i t ten rout ine DELlRlL is performed.

e 1s.e
LENGTH='LINGTTI ' .J.

GETCHA(K) = i f k (L rhen 'GlTCl lA(K) '
i f k > r rhen'GETCHA(K+J) '

PROCEDTIRE: I \LTER(1, J)
possible val t tes: nono
n2rarraf ors ' T. T nrrrsf ha i r) l 'oopI. SI t s r ! !vu

effect :
i f I -< 0 v I > 'LENGTH' v J < 0 V J > 255 then a subrout ine cal l

to a uscr l , / r i i ter l rout j -ue AlTl i i l l l t l { is performed.

GE' j lc t i l i (i i) = i f 'd
I I rhen 'Gi iTCiIA(K) '

i fK-I thenJ

- l9-

DIS CUS S ION

It is possibLe. to ver l fy the coniplcteness of t t rese def in i t ions by

sholr ing that a value is def ined for each funcr ion for every possible

sequence of cal1s. The possibi l i ty of inf in i te looping through repeated

cal1s of error rout ines exists, but th is r , rould be an error in usage noc

in def in i t ion.

One can demonsLrare that a minimum of informat ion is given out by

the def in i t ions by shorving f i rst i ts suf f j .c iency for use (i .e. , complete-

ness) and by strowing t . l ' ra l the widest conceivable var iety of implenentat ions

can f i t the def in i t i -ons.

The usual f orm of docurnentaLion vrould be (l) much more wordy, (2) rnore

reveal ing of internal aspects. In fact , becausc natural 1-anguage is used

the complefeness can only be assured by exhibi t ing Ehe internal structure.

The mnemonic names used here carry no essent j .a l informacion. They

could be replaced by'*1 ' , rx2r, etc. at no Eheoret ical costr but at the

pract ical cost of bejng obscure.

The def in i t ions are obscure no\,r to a reader unfami l iar wi th the reg-

ister of a Markov rnachine. This can be al leviated by a supplement sug-

gest ing vrays to use the funct ions (e.9. , a teachj .ng supplement) having no

off ic ia l s tatus .

Ro!grc1.'-.j=S..-

1n

l l . L. and Darr inger, J. A. , "SODAS and A l . lc thodology1)arrYrae

uEDISrr,

Computer

l':g! .$Ll-Ls__l_?!-Z_ l'a !!-lelsc.-qeg1llr i: Conference, pp.

I , ' . W., RandeLl , lJ . , "Flu1c j level l todel ing - A Methodology for
Systcnr Dcsignl ' Proc. 1968 IFIP f-g_Le-Lcqgg.

Programminglr publ icat ion of Etre
NeCherlands.

fnr Srrc l -om

449 -.1+7 4 .

2.

5.

Parnas, Da.vid T, . ,
rUore on simr.r lat ion Languages and Design Methoclology

for Computer Systemsj ' BgSjgqLJ-_969, pp. 739-743.

Di j l<stra, E. l , / . , t tNoEes on Structured
Tee-hnical Univers i ty of Eindhoven, The

Di jksLra, E. W., "Complexi ty Contr :o11ed by Hierarchical Order ing of
Function and Variabil ityrrr in !gryIefg_Ug=."ggr_1lg-, proceedings of a
nreet ing at Garmisch, Gernrany, October 7-11, 1968.

Gi l l , Stanley, I 'Thoughts on Ehe Sequence of Wri t ing Softr , rarc j ' in

-,S-ql_trLqI=_Llg_l-!r9_q1'.i.11g, proceedings of a meeLir.rg ar Garmisch, Germany,
october 7 -1,L, 1968.

7 . Di jkstra., E. \^l . ,
rrStructured Progra.runingj' in fu_flr;ggs_Elgilu=Lt.tg

Techni<tues,- , proceedings of a meet ing held in i lonre, October 27 -31 , 1959.

B. Di j lcstra, E. I^ l . , r rA consLruct ive Approach to the I ' roblem of program
CorrecLnessjr BI I B, vol . 3, 1968.

9. Naur, P. , "Proof of Algor i thrns by Gene_ral Snapshots," BIT 6 , L966.

10. \ tu1f r et lLL, "BLISS Users Manualf ' publ icar ion of the Carnegie- l le l1on
I Inr ' r rarc i r " Dr ' f fq l , r r r r -h l r r t lSA.r rLurr /sr i i r r , Le. , L

11. WaiLe, V. I '1. , " ' Ihe l tobi l .e progranrming System: STAGE 2,r '
(. ru ln 1970), pp. 4IL-42L.

cAcM 13,7

L2. Parnas, David L. , I 'On the Use of Transi t ion Diagrarns in the Design
of A User Interface for an InLeract ive Cornputer Syst:emj l ! :Sg._f :g_2.
IgS:gryt_49!_ggnference , pp. 37 9-386.

13. HarLman, P. H. , Orvens, D.H. ,
t ' l lorv to Wri te Sof Lrsare Speci f icat ionsrt '

Irer-_tl_!_Z_l{.Qe, pp . 17 9-7 90 .

L4. Balzer, Robert I '1 . , "studies Concerning } l in imal Time Solut ions to t f ie
Fi . r ing Sqr,racl Synchronizat ion Probleml ' PH.D. thesis, Carrr .egie Inst i t r r te
of Technology, 1966.

n

15. London, R. ,

16. Sel ig, F. ,
ceedings of

L ' l . Brcdcn, ct
Un i. r 'er s i_ ty

I 'Cert i f icat ior i of TreesorL 3J' !4Ol 0une, 197 0.

"Documentat jon Standards/ ' in So*f t - l ra ls Eng., : l rss5rng-, pro-
a ncet i r rg at Ganr i isr :h, Geln: . r ry ' , Octobcr 7 -Ll , 1968.

3]r , "An Implcrnentat ion of I IVTf ' pr . rb l icat ion of Ehe
of Cal i forni .a aL Los Anseles.

