Thomas A. Alspaugh
Here are charts of some
common methods
rung in my home tower by the non-expert ringers.
Each chart shows a pattern
of sequences of bells ringing.
Each row in the chart
shows the sequence in which the bells ring one stroke.
The bells ring in the sequence of the first row,
then the next row,
and so on until the end of the chart
when the pattern repeats.
The charts were automatically generated
by a perl script I wrote,
which you are free to use.
The patterns begin from
rounds
(bells in numerical sequence),
and repeat at the end of the chart
where the bells have come back into rounds.
In practice a group of ringers
will ring in rounds until everything settles down
and the bells are striking in an even sequence,
then will change to the row numbered
[1].
The change is set into motion by
the conductor (the person in charge)
calling out
Go Plain Hunt on 6
(or whatever the name of the method is)
during a handstroke;
the ringers then ring the next stroke (a backstroke) in rounds still,
and commence the pattern
with the following handstroke.
Handstroke rows in these charts have
no background,
backstroke rows have a
faint background.
Every row that is in rounds (123…)
is underlined.
Each sequence begins in rounds
and continues until the bells come back into rounds.
Every lead end,
the backstroke that is the treble's second pull in leads,
has a
faint underline
and a mark in the margin
The bell in nths position at a lead end
subsequently follows the same pattern that
the bell in nths position at rounds
follows from rounds.
The patterns are constructed this way by convention.
The sequences have traditional names
for the number of bells involved:
Minimus |
4 |
Doubles |
5 (1+2×2) |
Minor |
6 |
Triples |
7 (1+2×3) |
Major |
8 |
Each sequence corresponds to its
place notation,
a string of digits, x's, and dots
that describe the pattern
in which the bells change places.
You do not need to worry about place notation
in order to find the charts useful.
Skip the text in this box unless you are interested.
-
x means
the bell in position 2n changes places with
the bell in position 2n+1,
for all reasonable n
(place 1 with place 2, place 3 with place 4, etc.).
-
A digit means that the bell in that position
doesn't change places with another bell.
For example,
-
14
means that (for four bells)
the bell in position 2 changes places with
the bell in position 3,
but the bells in positions 1 and 4 stay put;
-
125
means that (for five bells)
the bells in positions 3 and 4 trade places,
but the bells in positions 1, 2, and 5 stay put.
-
Obviously,
some strings ask for changes that can't happen,
for example 13
(since the bells in positions 1 and 3 stay put,
who does the bell in position 2 exchange with?)
since bells can only trade with adjacent places—it's
too difficult to move a bell more than one place over.
As a convenience,
I give the number of times the pattern is repeated,
rather than write it out unrolled:
3.1
3
rather than
3.1.3.1.3.1.
Plain Hunt
on 3
3.1
3
123
1213
2231
3321
4312
5132
6123
Plain Hunt
on 10
x.10
10
1234567890
12143658709
22416385079
34261830597
44628103957
56482019375
66840291735
78604927153
88069472513
90896745231
100987654321
119078563412
129705836142
137950381624
147593018264
155739102846
165371920486
173517294068
183152749608
191325476980
201234567890
Plain Hunt
on 4
x.14
4
1234
12143
22413
34231
44321
53412
63142
71324
81234
Plain Hunt
on 9
9.1
9
123456789
1214365879
2241638597
3426183957
4462819375
5648291735
6684927153
7869472513
8896745231
9987654321
10978563412
11795836142
12759381624
13573918264
14537192846
15351729486
16315274968
17132547698
18123456789
Plain Hunt
on 5
5.1
5
12345
121435
224153
342513
445231
554321
653412
735142
831524
913254
1012345
Plain Hunt
on 8
x.18
8
12345678
121436587
224163857
342618375
446281735
564827153
668472513
786745231
887654321
978563412
1075836142
1157381624
1253718264
1335172846
1431527486
1513254768
1612345678
Plain Hunt
on 6
x.16
6
123456
1214365
2241635
3426153
4462513
5645231
6654321
7563412
8536142
9351624
10315264
11132546
12123456
Plain Hunt
on 7
7.1
7
1234567
12143657
22416375
34261735
44627153
56472513
66745231
77654321
87563412
95736142
105371624
113517264
123152746
131325476
141234567
Bastow
Little Bob
Minimus
x.12.x.14
3
1234
12143
22134
31243
41423
41423
54132
64123
71432
81342
81342
93124
103142
111324
121234
Bastow
Little Bob
Minor
x.12.x.16
5
123456
1214365
2213456
3124365
4142635
4142635
5416253
6412635
7146253
8164523
8164523
9615432
10614523
11165432
12156342
12156342
13513624
14516342
15153624
16135264
16135264
17312546
18315264
19132546
20123456
Bastow
Little Bob
?Doubles
5.125.5.1
4
12345
121435
221345
312435
414253
414253
541523
641253
714523
815432
815432
951342
1051432
1115342
1213524
1213524
1331254
1431524
1513254
1612345
Bastow
Little Bob
?Triples
7.127.7.1
6
1234567
12143657
22134567
31243657
41426375
41426375
54162735
64126375
71462735
81647253
81647253
96174523
106147253
111674523
121765432
121765432
137156342
147165432
151756342
161573624
161573624
175137264
185173624
191537264
201352746
201352746
213125476
223152746
231325476
241234567
Plain Bob Doubles
5.1.5.1.5.1.5.1.5.125
4
12345
121435
224153
342513
445231
554321
653412
735142
831524
913254
1013524
1013524
1131254
1232145
1323415
1424351
1542531
1645213
1754123
1851432
1915342
2015432
2015432
2151342
2253124
2335214
2432541
2523451
2624315
2742135
2841253
2914523
3014253
3014253
3141523
3245132
3354312
3453421
3535241
3632514
3723154
3821345
3912435
4012345
Plain Bob Minor
x.16.x.16.x.16.x.16.x.16.x.12
5
123456
1214365
2241635
3426153
4462513
5645231
6654321
7563412
8536142
9351624
10315264
11132546
12135264
12135264
13312546
14321456
15234165
16243615
17426351
18462531
19645213
20654123
21561432
22516342
23153624
24156342
24156342
25513624
26531264
27352146
28325416
29234561
30243651
31426315
32462135
33641253
34614523
35165432
36164523
36164523
37615432
38651342
39563124
40536214
41352641
42325461
43234516
44243156
45421365
46412635
47146253
48142635
48142635
49416253
50461523
51645132
52654312
53563421
54536241
55352614
56325164
57231546
58213456
59124365
60123456
Cloister Doubles
5.1.3.1.3.1
3
12345
121435
224153
342135
441253
514235
612453
612453
721543
825134
952143
1051234
1115243
1212534
1212534
1321354
1423145
1532154
1631245
1713254
1812345
Stedman Doubles
3.1.5.3.1.3.1.3.5.1.3.1
5
12345
121354
223145
332415
423451
524315
642351
743215
834251
943521
1045312
1154321
1253412
1253412
1335421
1434512
1543152
1634125
1731452
1813425
1914352
2041325
2114235
2212453
2321435
2424153
2424153
2542135
2641253
2714523
2841532
2945123
3054132
3151423
3215432
3351342
3453124
3535142
3631524
3631524
3713542
3815324
3951234
4015243
4112534
4221543
4325134
4452143
4525413
4624531
4742513
4845231
4845231
4954213
5052431
5125341
5252314
5353241
5435214
5532541
5623514
5732154
5831245
5913254
6012345
Grandsire Doubles
3.1.5.1.5.1.5.1.5.1
3
12345
121354
223145
332415
434251
543521
645312
754132
851423
915243
1012534
1012534
1121543
1225134
1352314
1453241
1535421
1634512
1743152
1841325
1914235
2012453
2012453
2121435
2224153
2342513
2445231
2554321
2653412
2735142
2831524
2913254
3012345
Demi-Bristol Minimus
x.x.x.14.x.x.x.34.14.x.14.x.x.14.x.14.
x.14.x.x.14.x.14.34.x.x.x.14.x.x.x.14
3
1234
12143
21234
32143
42413
54231
62413
74231
82431
92341
103214
113124
121342
133124
143214
152341
162431
174213
184123
191432
204123
214213
222431
232341
243241
252314
263241
272314
282134
291243
302134
311243
321423
321423
334132
341423
354132
364312
373421
384312
393421
404321
414231
422413
432143
441234
452143
462413
474231
484321
493412
503142
511324
523142
533412
544321
554231
562431
574213
582431
594213
604123
611432
624123
631432
641342
641342
653124
661342
673124
683214
692341
703214
712341
723241
733421
744312
754132
761423
774132
784312
793421
803241
812314
822134
831243
842134
852314
863241
873421
884321
893412
904321
913412
923142
931324
943142
951324
961234